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Foreword

By John Kershaw, VIPER Project Leader

Introduction

The VIPER microprocessor chip is one of the results of a research program on

high-integrity computing being carried out at the Royal Signals and Radar Es-

tablishment at Malvern, England. RSRE (which is a research station belonging

to the British Ministry of Defence) has been developing formal methods of spec-

ifying and analysing software for some 15 years, but only in 1983 did we begin
to look at the equally challenging problem of computer hardware.

Correctness of computer hardware has only become an issue because of the

pressure from computer users (civil and military) to put programmable elec-

tronics into ever more critical systems. The medical, automotive, and avionic
communities now all use general purpose microprocessors in systems which could

place the lives of their customers at risk, a_d the threshold is constantly being
pushed higher: computer control offers so many advantages in cost, perfor-

mance, and flexibility that its temptations are rarely resistible.

Conventional microprocessor chips, however, are neither well enough spec-

ified nor accurately enough implemented for life-critical (or security-critical)
applications. Every month sees another press report of problems in widely-used
devices. VIPER, like the FM8501 and 8502, was born of the need for a micro-

processor with a precise, formal, specification, the highest possible assurance

that the physical device conforms to it, and the special characteristics needed
for high-integrity applications.

Computational Logic Incorporated were commissioned by NASA to review

the work on VIPER, under a long-standing framework for collaboration in

aerospace research between NASA and the Royal Aerospace Establishment in

Britain. Information on VIPER was supplied by ourselves and by Marconi
Electronic Devices Ltd.

iii

PRECEDING PAGE BLANK NOT FILMED



The Formal Specification and Partial Verification of VIPER

Technical Report #46

iv

The VIPER Design and Verification Process

VIPER was developed in response to a number of UK military requirements. We

made an early decision (in 1984) to fabricate chips as a demonstration of what
could be done, and therefore limited ourselves to technologies which offered a

reasonably quick route to silicon. Gordon's LCF-LSM system (which has now

matured into HOL, see the references at the end of the report) was the obvious
choice, since a full account of it had been published with a tutorial example of

hardware verification - a simple 8-bit machine now called "Tamarack."

HOL is syntactically quite similar to the hardware description language
ELLA, so we decided to live with an informal (though technically easy) step

in the design process by changing languages in the middle. A strongly-typed

language like HOL is a big help when writing a specification (it detects a large

proportion of errors) and a theorem prover for it is available. ELLA is an es-
tablished HDL with a wealth of tools, some of which can refine a block-level

description into a gate-level design with almost no human intervention. We
changed at the point of least effort; the process could easily be mechanised

though for a device as simple as VIPER this did not seem worth while.

From the language change downwards, the VIPER design was first verified

by a process of "intelligent exhaustive simulation" whose coverage depends on
the set of test vectors applied. These vectors (which contain "don't cares" in

profusion) are generated by the ELLA simulator from a hand-written program.

Though we believe this method to be sound (it is in fact pessimistic: it rejects
some correct circuits but should never accept a wrong one) it depends too much

on human assiduity for comfort, so we have replaced it. The new technique,

developed by Clive Pygott at RSRE and based on the work of R. E. Bryant, is

called NODEN; it was used in August 1989 to repeat the low-level verification

of the latest version of VIPER. This device (VIPER 1A) is designed to operate

in pairs and has built-in comparators to check for address and data bus errors.

The comparators have too many inputs for the NODEN analyser to check them,

but the rest of the design was confirmed to be correct.

The upper levels of the verification were done by Avra Cohn at the University
of Cambridge, England, using the HOL Theorem Prover. The proof is not

complete in a number of areas concerning the meaning of computer arithmetic;

these points have been documented by Cohn herself and are commented on

further in this report. We are confident from careful (but informal) argument,

simulation, and testing of actual chips that the implementation is correct, but
as Fetzer and others have pointed out it is not justified in strictly mathematical

terms to claim a "proof" of any physical device.

Hardware, of any kind, is fundamentally different from computer software in

that a truly formal proof (a "demonstration" in Fetzer's terms) of correctness

is not possible. Physical devices wear out and break down, and no amount of
formal logic can guarantee immunity: ultimately physics makes its own rules.

With VIPER we have put almost as much effort into guarding against hard-
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ware breakdown (using parity bits, master/slave operation, built-in test, and

self-testable logic) as into assuring correctness of the design. The two aspects

are of course complementary, for most redundant systems are built round the as-

sumption that the channels will fail independently. If there is a common design
fault, they may all fail together.

The Future

This report and Avra Cohn's work confirm our impression that more remains

to be done, both to build up confidence in the existing VIPER design and to

develop new techniques of design and verification which avoid the limitations

of present methods. CLI themselves are major contributors to this field; in the

UK we are sponsoring work on methods of refining a functional specification by
correctness preserving transformations, so that the eventual gate-level design is

"correct by construction." The first test vehicle for this work will probably be

a much faster (but upwards compatible) development of VIPER.

At the silicon level, we are insuring against faults in the CAD software

and manufacturing process (which are below the end-point of our verification

work) by sponsoring a second, independent, gate-level design of the chip using
a different technology.

In the longer term we feel that a combination of methods will usually be

needed to achieve the highest assurance. A design may be pronounced "correct

by construction" by a faulty software tool; to guard against this a separate
proof of implication could be carried out using different tools. At the level of

electrons and transistors formal logic is not very helpful, and the best safeguard

is to repeat the design process in as different a way as possible. Interchange

and co-operation between the various research teams is vitally important, and

we hope to build on the knowledge we have gained from CLI and NASA to
strengthen our own work and to provide secure foundations for VIPER and its
descendants.

RSRE Malvern, UK

Email: KERSHAW@HERM ES.MOD.UK
John Kershaw
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Chapter 1

Introduction

VIPER (Verifiable Integrated Processor for Enhanced Reliability) is a 32-bit

microprocessor architecture designed by the Royal Signals and Radar Estab-
lishment (RSRE) in Malvern, England [Ker84]. Recent technical and marketing

literature includes the following statements:

... formal mathematical methods have been used both to specify the

overall behaviour of the processor and to prove that the gate-level

realisations conform to this top-level specification. [CP87]

[Formal methods] were used in the development of VIPER, the first

commercially available microprocessor with a formal specification

and a proof that the chip conforms to it. [Dyk88]

The purpose of this report is to examine the claim that the gate-level design
of the VIPER microprocessor is mathematically verified. The sources for our

study of VIPER included a number of technical documents from RSRE and

Cambridge University. Additionally, in April, 1989, we personally interviewed

the VIPER design team and their Cambridge University verification consultants.
Although a great deal of effort has been expended on the formal specification

and verification of VIPER, there is not sufficient evidence to substantiate the

claim that the VIPER gate-level specification (the implementation netlist) has

been proven to implement its top-level specification (tile instruction interpreter).

This is not a unique point of view; a recent paper by one of the Cambridge

University consultants arrives at a similar conclusion [Coh89b].

Chapter 2 contains an informal description of the VIPER microprocessor.

The analysis of VIPER begins in Chapter 3 with an outline of the abstract lay-

ers used to specify VIPER. Chapter 4 covers each of the proofs, and attempted
proofs of correspondence between the levels in the specification. A schematic

block diagram of the contents of Chapters 3 and 4 appears as Figure 1.1. The
conclusion contains a discussion of some of the broader issues in managing for-

mal hardware verification projects, using the VIPER project as an example.

1 Q
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Throughout the report we contrast the specification and verification approach
used for VIPER with that used during the specification and verification of the

FM8502 microprocessor [Wat87].
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Figure 1.1: A schematic representation of tile specification and verification of
VIPER.



Chapter 2

The VIPER

M icroprocessor

The VIPER project was launched after the British Ministry of Defence became

increasingly concerned that computer hardware and software errors had caused

and would continue to cause loss of life. It was believed that the formal speci-

fication and verification of a microprocessor would yield an embedded-systems
platform whose operational characteristics were completely known. Some other

goals of the VIPER project, besides those stated in the VIPER design docu-
ments [Ker84], are listed below.

Design Stability. Different revisions of supposedly identical processors have
been found to behave differently even though these processors bear the

same part number. These differences are often the result of iterating

a design as the processor implementation technology matures. To avoid

this problem, VIPER implementations were to be verified before they were
produced, thus insuring all VIPER implementations would have identical
functionality.

Safety Critical Architecture. The VIPER architecture is straightforward
and simple. A simple architecture is easier to specify, verify, and use

correctly. To enhance the VIPER's use in safety-critical computing, the

VIPER designers added features which force the processor to halt under

various conditions. The VIPER enters a halt state whenever an unimple-

mented instruction is encountered, when the memory does not respond
within a fixed amount of time, an unexpected arithmetic overflow is de-
tected, etc.
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Reliable Systems. Formal verificationisnot insuranceagainstphysicalfail-

ures.The VIPERIA, a successorto the VIPERI, includesadditionalcir-

cuitrywhich allowstwo processorsto be operated as a self-checkingpair

[Pyg87,HP87]. If the computations of the two processorsever diverge,
then both processorswillhalt.

The above listpointsout the greatsuccessMOD has achievedwith the VIPER

project.They have implemented a safety-consciousarchitecture,and developed

dual-processorsystems capabilitywhich should provideenhanced reliability.

An informal,architectural-levelspecificationforVIPER appears in[Ker84].

VIPER isa 32-bitmachine with an accumulator,two index registers,a 20-bit

program counter, and a 1-bitflagregister.The processorsupports word ad-

dressingofseparate,2_° word I/O and memory spaces.Each 32-bitinstruction

consistsof a 12-bitopcode and a 20-bitliteralvalue or memory address. As

mentioned above, VIPER isdesigned to stop whenever an errorisencountered

during processing.The factthat the processorhas halted due to an erroris

detectableby means of a dedicatedoutput. The VIPER architecturedoes not

provideinterruptsor other kindsof exceptionsexcept as noted above.



Chapter 3

Form al Specification

The formal specification of VIPER is divided into four abstract levels, summa-

rized in Table 3.1. Starting from the top-level specification (most abstract),
each level becomes more and more concrete until a gate-level description (least
abstract) is reached. Partitioning the specification this way was inspired by

Gordon's specification and verification of a simple 12-bit processor modeled in

LCF_LSM [Gor81,Gor83]. Table 3.1 only lists the specifications published by
RSRE. For some of the proofs the LCF.LSM specifications were recast into the

derivative language HOL [Gor87] by consultants at Cambridge University. In
the following Sections we focus on the original versions and treat the HOL trans-

lations along with the proofs in Chapter 4. The specification style used in the

LCF.LSM specifications is not significantly altered by translation to HOL. It

is also instructive to examine some of the deficiencies in the original LCF_LSM
specifications, not all of which are solved in their HOL counterparts.

The VIPER Specification

Level Language(s) Reference

Top LCF_LSM

Major State LCF_LSM

Block LCF..LSM, Drawing; ELLA

Implementation ELLA; HILO, FDL

[Cui85]

[Cu186]
[Pyg86]

N/A

Table 3.1:Levelsinthe VIPER Specification,indecreasingorderofabstraction.
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3.1 The Top Level

3.1.1 Overview

At the top level, VIPER was specified as a function in LCF.LSM named NEXT.

Below we provide a schematic view of the operation of the function.

NEXT (rom,p,a,x,y,b,stop) -> (ram,p,a,x,y,b,stop)

NEXT takes the current programmer (visible) state (of seven components) and
computes a new (seven component) programmer state based on the instruc-

tion referenced by the program counter. The programmer state consists of the

registers a, x, and y, the program counter p, the multi-purpose flag b, the

"processor-stopped" flag stop, and the data and I/O memory space ram. NEXT

is an interpreter for a single instruction, which an assembly language program-

mer could use to predict the changes to the programmer state on the execution

of one instruction. This is similar to the specification function for the FM8502,

except that the FM8502 specification is an instruction interpreter for a processor
executing a sequence of instructions.

Due to the very abstract nature of the top-level specification for VIPER,

a number of the safety-critical features of the architecture do not appear. For

example, the NEXT specification includes the stop flag, but the top-level specifi-
cation function does not address all of the ways that real VIPER processors can

be forced to halt, e.g., through a memory timeout. Instead, NEXT implicitly as-

sumes a configuration in which the RESET, SINGLE-STEP, and ERROR inputs

to the physical processor are never asserted, and all memory accesses complete
normally. These assumptions are made explicit in the attempts to prove that

the block-level implementation (Section 3.3) correctly implements the top-level

specification. Since the top-level specification makes no account of any inputs

to the system, the specification does not really model I/O, even though the

I/O memory space is included in NEXT. In summary, when considering what

has been proved about VIPER with respect to the high-level specification, one

should realize that this specification does not cover every behavior, including
several important safety-critical behaviors.

These deficiencies were known to RSRE, but addressing them would have
required a radically different specification approach. Modeling memory timeout,

for example, would have necessitated some notion of time in the high-level spec-

ification, as well as a nondeterministic input to model memory acknowledgment.
At the time RSRE scientists began the work they did not feel confident in ex-

tending the specification methodology past the simple state-transition technique
which was employed [Cull.

We do not mean to suggest that these are trivial problems; the formalization
of peripheral behavior is an active area of research in hardware verification. For

example, the FM8502 specification employs the notion of an oracle, a parameter
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ADD32(r,m)

LET sum = WOED34((VAL33(SIGNEIT r)) + (VAL33(SIGNEXT m))) IN

LET opposite = (EL 31 (BITS32 r)) ZOg (EL 31 (BITS32 m)) IN

(TILIM34T032 sum, {sma_

(EL 32 (BITS34 sum)) XOE opposite, (carry}
((EL 32 (BITS34 sum)) XOR ((EL 31 (BITS34 sum))))) _overfloe}

Figure 3.1: Top-level specification of addition with carry and overflow for the
VIPER microprocessor.

to the low-level specification function which models the nondeterministic occur-

rence of RESET events and memory acknowledgments. The oracle abstraction

made it possible to formally state and prove that the FM8502 implementation
conforms to the top-level specification in the face of arbitrary delays from the

memory. Another proof connected the programmer's view of resetting the ma-
chine with the hardware-level reset.

3.1.2 Arithmetic Specifications

The arithmetic behavior of VIPER is described in terms of operations on natural

number abstractions of Boolean words. Interpreting these specifications is com-
plicated by the fact that two equivalent representations are used for Boolean

words in LCF.LSM and HOL: the built-in types wordn, and lists of Boolean

values. The top-level specification for addition in the ALU is presented in Fig-

ure 3.1. Hardware addition is defined as sign-extending 32-bit words to 33

bits (which involves an intermediate Boolean list), converting 33-bit words to
numbers, adding the numbers, converting the sum to a 34-bit word, and then
truncating this word to 32 bits. Computation of the carry and overflow are done
with list forms of some of the intermediate results.

The sum computed by ADD32 is a fairly straightforward definition of hard-

ware addition, although the sign-extension of the addends is never explained. 1
More significant is the fact that nowhere in the formal work on VIPER is it

ever demonstrated that ADD32 is an abstraction for either signed or unsigned

addition, nor is there ever any formal description of the significance of the carry

and overflow outputs of ADD32. Whereas the informal specification states that

"...overflow on either addition or subtraction causes the VIPER processor to
stop..." [Ker84], a statement about signed arithmetic, the formal specification

never mentions signed numbers. _ Thus the top-level specification leaves too

IAn unconvincing justification appears in the specification [Cu185]. At the block level
(Section 3.3), addition is defined by truncating the 33-bit result of a 32-bit addition.

_Signed integers are not a built-in type in LCF_LSM. They could have been modeled, for
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much unspecified about the arithmetic operation of the processor. This does
not mean that the top-level specification is wrong, simply that it is currently

unable to support formal arithmetic analysis at any level higher than uninter-
preted operations on Boolean words.

An example will clarify the above points. Imagine that a programmer had

written a VIPER program whose abstract specification was to compute the sum

of two signed integers. The programmer would like to prove the following:

If a, b, and ¢ are 32-bitwords in the VIPER system, and ifan

instructionisexecuted such that IIEIT places the sum output of

ADD32(a.b) into ¢, and ifthe ovez'_1ow output of ADD32(a,b) is

not set,and ifa,b,and c are the respectiveintegerabstractionsof

a,b and ¢ as32-bit,2'scomplement words, then c = a + b.

The programmer would further want to know that overflow is set only if a+ b is
an integer which can not represented as a 32-bit, 2's complement word. The top-

level specification of VIPER does not give the programmer the necessary tools to

carry out this proof: no abstraction function from Boolean words to integers is

provided, the result returned by ,tDD32 has no abstract interpretation as either a

signed or unsigned integer, and there is no formal definition of "representability"
by which to judge the correctness of the overflow bit.

In contrast, the specification of the FM8502 provides a complete founda-

tion for higher-level proofs. This was accomplished by proving a number of

theorems relating the hardware operations of the FM8502 to abstract functions

defining natural number and integer arithmetic. The complete specification
of the FM8502 enabled the development of a formally verified system which

includes a verified assembler and verified compiler [Moo88,You88].

3.2 The Major-State Machine

The next lower level of abstraction in the VIPER specification is the major.

state machine. The major-state level abstracts VIPER as a cyclic graph whose

nodes represent different phases of instruction execution, e.g., instruction-fetch,

perform-AI, U-operation, or read-memory. Each node in the major-state graph

is modeled by an LCF_LSM function that specifies how the programmer state

and internal state variables change as VIPER passes through the phases of

instruction processing. The only concept of time at this level is the implicit
ordering of the state transitions.

As specified by RSRE, the major state machine is not a single function in

LCF-LSM, but rather a collection of functions with only an informal connection.

In other words, RSRE's major-state specification cannot be used as a simulator

for VIPER in the same way that the top-level specification can. Recasting the

example, a_sa sign/magnitude pair.
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specification into HOL for purposes of formal proof (Section 4.3) necessitated

the introduction of a new formal framework which is not present in the original
specification, i.e., a framework which connects the individual state functions

into a single function. Both the LCF.LSM and HOL versions continue to ignore
external reset, 3 stop on external error, and memory timeout.

The major-state level was an attempt to bridge the gap between the high-

level and low-level specifications, in order to simplify the formal correspondence

proofs. Although two proofs (described in Chapter 4) involve this specification
level, neither factors into the final correctness argument for VIPER hardware.

We also point out in Section 4.3 that the original LCF.LSM specification was

incorrect, in the sense that it was not equivalent to the top-level specification.

There is no equivalent of the major-state level in the FM8502 specification.

3.3 The Block-Level Specification

A block is an abstract description of a major subsystem of the processor, e.g., the

register file, instruction decoder, the ALU, etc. Each block has three equivalent
specifications: RSRE's published LCF_LSM version, the HOL translation of the

LCF_LSM used for formal proofs (Section 4.4), and an unpublished counterpart

in the ELLA [MPT84] simulation language used for Intelligent Exhaustion sim-
ulation (Section 4.1). The block-level specification utilizes a register-transfer

representation for sequential hardware. All of the registers are assumed to be

activated by a common clock, and the block-level specification functions specify
the behavior of the combinational logic. The latches never appear explicitly in

the LCF_LSM or HOL versions. Instead, registers are modeled as parameters of

the block-level functions. Whether an input argument or computed value is to

be implemented as a latch is only informally specified by means of text and draw-

ings. Latches are explicitly represented in the ELLA descriptions. In contrast,

the FM8502 specification utilized a stylized hardware description methodology

which makes apparent which parameters represent sequential state.

As with the major-state model, RSRE's LCF_LSM specification is partial;
there is no formal description of the complete VIPER processor at the block

level. This is a serious flaw, since an indispensable component of the original

specification of VIPER is a schematic drawing that indicates the intended inter-

connection of the blocks. Connecting the block-level models to create a usable

formal specification in HOL was a major hurdle in the high-level proof attempt
(Section 4.4). The translation from LCF_LSM to HOL also uncovered a number

of syntactic and typographical errors in the LCF_LSM specifications [Coh89a].
The block-level specification is also flawed by the need for the co-specification

in ELLA. RSRE felt that it would have been prohibitively complicated to at-

tempt gate-level verification against the block model using LCF_LSM [CP87],

_The specification does include a BESET state, but since external events are not modeled
there is no way to enter that state.
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and originally specified the block-level machine in ELLA. We comment further

on the problems of the dual specification in Section 4.1.3.

3.4 The Implementation-Level Specification

The implementation-level specifications were produced by Marconi Electronic

Devices, Ltd. and Plessey Company plc. The VIPER implementations were

created from the block-level descriptions of VIPER. Two descriptions of each
implementation actually exist: the circuit netlist in a proprietary CAD lan-

guage, and translations of the netlists into ELLA which were used during Intel-

ligent Exhaustion simulation (Section 4.1.1). The gate-level specifications are

considered proprietary information, and are not publicly available.

The transfer from a formal specification language into an informal one, such
as a hardware design language, is a weak link in the formal hardware verifi-

cation process. The RSRE specification of VIPER is further weakened by the

necessity of two informal translations: the translation of the gate-level models

from proprietary languages to ELLA, and the translation of the ELLA descrip-

tions of the block model to LCF.LSM and HOL. It is not possible to prove the

correctness of either translation due to the lack of a formal theory relating the
different languages. I

In contrast, the low-level specification of the FM8502 can be viewed as a

gate-level specification, in the sense that the specification can be formally ex-

panded down to simple functions abstracting gates and registers. Although it

has not been done, it would be possible to translate this formal expansion into

a commercial CAD language in a single informal step. No special-purpose inter-
mediate language was needed for the FM8502 verification because of the power

of the Boyer-Moore theorem prover in dealing with induction, and the built-in

Boolean decision procedure which simplified low-level proofs.
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3.5 Specification Summary

The formal specification of VIPER is partitioned into four levels of abstraction.

At the highest level, RSRE described VIPER with decreasingly abstract sets of

functions in LCF.LSM. At the lowest level of abstraction are the gate-level mod-
els in proprietary CAD languages. The block-level and gate-level specifications

are also given in the ELLA simulation language.

We noted several deficiencies in RSRE's specifications:

• There is no notion of external events in the top-level specification. Many
of the safety-critical design features, such as externally forced error resets
and memory timeouta, cannot be considered at this level.

• The top-level specification is incomplete with regard to the arithmetic

operations which VIPER is said to provide. It impossible to use the top-

level specification to prove abstract properties of programs running on
VIPER computers.

• There is no complete formal description of the block-level machine (al-

though Cohn later created one). The RSRE block-level specification only

describes individual blocks; blocks are related to each other by informal
text and drawings. The style used in the block-level specification was
apparently geared toward low-level verification, without consideration for

how it would be used in proofs at higher levels.

• There is no formal connection between the LCF_LSM and ELLA block-

level specifications.



Chapter 4

P roofs and P roof A ttem pts

The VIPER verification effort includes proofs by two diverse groups Over a

three year period. The first proofs were carried out by RSRE without me-

chanical assistance. Later, Avra Cohn of Cambridge University was engaged to

perform mechanical proofs using the HOL theorem prover. RSRE planned to
verify VIPER in several steps, which when composed would constitute a formal

verification of the processor. Three proof steps were to link the four abstract

specification layers: Top _ Major State, Major State _ Block, and

Block ¢==_ Implementation. A complete HOL proof linking Top ¢=:¢. Major-

State was produced by Cohn. No HOL proof was attempted for the Ma-

jor State ¢==_ Block correspondence; instead, an HOL proof of Top _ Block

was attempted but never completed. There is no formal proof relating the block-

level specification to the implementation, only an incomplete argument based
on Intelligent Exhaustion simulation.

A briefly annotated, chronological list of the proofs and proof attempts can

be found in Table 4.1. We discuss the nature and status of these proofs and

proof attempts in the sections which follow. We follow the chronology, beginning
at the implementation level and ending at the top level.

4.1 Block Implementation

The first analyses of the VIPER specification were designed to show that the

gate-level implementations proposed by the manufacturers correctly implemented

the block-level specifications. Since the block-level specifications only deal with
the combinational behavior of the blocks, this correspondence could have been

demonstrated by exhaustive simulation. RSRE introduced a method called In-

telligent Exhaustion (henceforth IE) which attempts to deliver the certainty of

exhaustive simulation without explicit simulation of every possible input pat-
tern. The remainder of this Section consists of an introduction to the IE tech-

13
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VIPER Proof Efforts

Levels Ref. Notes

Block ¢==_ Implementation [Pyg85]

Top _ Major State

Top ¢=_ Major State

Top _ Block

[CP85,CuI86]

[Coh87]

[Coh89a]

ELLA specifications were

analyzed by Intelligent Ex-
haustion simulation. The

reference is to the method;
the analyses are not docu-
mented.

A hand proof, later invali-

dated. The first reference

is to the method, the sec-

ond documents the proof at-
tempt.

A machine-checked proof,

using HOL versions of the

(corrected) specifications.

A formal analysis in HOL;
not a finished proof.

Table 4.1: Analyses of the VIPER specification, in chronological order.

nique, followed by a discussion of the application of IE to the VIPER verification

and the problems with connecting the low-level proofs to the higher levels. Al-
though the low-level specifications were extensively analyzed, this analysis does

not constitute a formal proof of the Block _ Implementation correspon-
dence.

4.1.1 Intelligent Exhaustion Technique

Intelligent Exhaustion (IE) is a verification methodology which could be im-

plemented in a number of high-level digital simulation systems. IE verification

involves the simulation of one or more special purpose circuits encoded in a

behavioral simulation language. In brief, gate-level and behavioral models of
the circuit are simultaneously simulated, and the outputs of the two models are

compared by a device which is also encoded in the simulation language.

If the behavioral and gate-level models agree on all possible inputs, then the

two models are identical, although in general this would require the simulation of
an exponential number of tests. IE exploits the fact that the values of functions

are often determined by a proper subset of their input values. For example
the output of a hardware AND gate will be low if one of the inputs is low;

the value of the other input is irrelevant in that case. Irrelevant signal values

can be modeled with unknown or indeterminate states, which are well-known
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abstractions for digital logic simulation [BF76]. Since simulating a circuit with

an indeterminate input is equivalent to simulating both high and low values for

that input, intelligent analysis by the engineer can reduce the number of input
patterns required to completely test the functionality of a combinational circuit.

As long as it can be shown that every possible input has been considered, then

IE is equivalent to exhaustive simulation. This condition is easy to check; for

example a simple program can verify that a set of n-bit vectors which include

indeterminate states actually covers all 2'* possibilities.

In practice, however, IE analyses are more complicated than suggested by
the preceding paragraph. For example, if a device has several loosely correlated

outputs, the most efficient verification may require a separate IE simulation for

each output. Therefore it may also need to be shown that the IE simulations

cover every output. This is not as straightforward as checking input coverage,

since complete output coverage can only be determined by a careful examination
of the behavioral source code. Another complication is that the behavior of a

combinational circuit may only be specified for a subset of all possible inputs.

For these cases it only needs to be shown that the inputs cover all interesting

behavior. This requires a careful statement of exactly what the interesting cases

are, and a corresponding proof that all of these cases have been considered.
Arithmetic circuits, like adders, also cause problems. For example, the IE

verification of the carry output of an n-bit adder requires the simulation of

0(2 "+2) patterns. While IE may provide economical verification of some types

of circuits, it seems that the application of the method to arithmetic circuits
will always be limited to relatively small devices; the combinatorial explosion is

inescapable. RSRE also discovered cases where IE is too pessimistic, and would

lead one to believe that correct circuits are incorrect [Pyg88].

4.1.2 Application to VIPER

tLSRE implemented IE in the ELLA simulator, in part because the ELLA system

had interfaces to the proprietary CAD systems used in the actual fabrication

of VIPER. The block-level specification of VIPER was originally developed in

ELLA, whereas the manufacturers provided gate-level realizations of the block-

level designs in the proprietary CAD languages HILO and FDL. These gate-
level designs were automatically translated to ELLA for IE simulation. The

IE simulations uncovered errors in the initial designs "that would have been

virtually impossible to find by simulation" [Pyg85].

The low-level verification of VIPER by Intelligent Exhaustion remains in-
complete, however, for two important reasons. Most importantly, RSRE never

proved that the input patterns used for IE simulation provided complete cover-

age of every possible case [Pyg]. The complete IE analysis of VIPER required
the development and simulation of more than 6000 patterns [Pyg85]. There

is no proof that these 6000 test patterns completely exercise the block-level

specifications.
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There is also no formalized argument that the implementations of the VIPER

ALU meet the block-level specification. Recall that IE does not mitigate the

combinatorial nature of verification of arithmetic circuits. In particular, IE sim-
ulation could not be performed on the entire 32-bit ALU. Instead, the ALU was

partitioned into 8, 4-bit slices and associated "glue" logic for carry-lookahead.
IE was only used to show that the 4-bit slices were correct; the correctness

of the complete ALU is only supported by traditional engineering arguments.
Since the later proof which begins at the block level (see Section 4.4) assumes a

complete, 32-bit ALU, there remains an unverified gap between the block-level
ALU specification, and the subcircuits that were analyzed with IE.

4.1.3 Interface to Higher Levels

Verification of the electronic block model of VIPER is not an end in itself, hut
has to be considered as a part of the overall verification effort. The block-level

specification exists in two forms: the LCF.LSM which forms the basis for high-
level verification, and the co-specification in ELLA. The LCF_LSM version was
created by hand-translating ELLA to LCF_LSM. ELLA is not an LCF_LSM

simulator; a number of subtle differences between the two representations are

documented in [Pyg85]. For example the ELLA specification employs data
types not available in LCF.LSM. There are also a number of ramifications of thee

presence of indeterminate states in ELLA with respect to interpreting LCF_LSM
specifications.

The use of different languages in a verification effort increases the chance
of errors, either in the translation process, or errors caused by differences in

the semantics of the languages. In the case of VIPER, conjectures verified by

IE simulation of the ELLA models are used as axioms in the high-level proofs
based on the LCF_LSM versions of the specification, in spite of the fact that

there is no formal connection between the two languages.

In the case of the formal systems built on the FM8502, a uniform logical
theory (the Boyer-Moore logic) was used from the gate-level descriptions all the

way up to the specification of a high-level programming language. All of the

correctness proofs were checked with the Boyer-Moore theorem prover, which

ensures that all of the proof obligations have been discharged.

4.1.4 Summary

We are not convinced that RSRE researchers have formally verified the gate-
level implementation of VIPER. It was never verified that the IE test patterns

provided complete coverage, and there is no proof that the complete ALU de-

signs are correct. Even if the IE analysis of VIPER were to be completed there

still remains the gap between the LCF_LSM and ELLA specifications, bridged
only by informal arguments. The VIPER verification would be much more be-

lievable and satisfying if a uniform theory had been used at every level, and if
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RSRE had completed all of the proof obligations of the methodology in use.

4.2 Top Major-State (LCF_LSM)

Cullyer reported a proof, worked by hand, which showed that the major-state

machine correctly implements the top-level VIPER specification. This proof

attempt was carried out completely within the LCF.LSM framework, as Cullyer
used the LCF_LSM specifications. Cohn later demonstrated that the major-

state specification was wrong, thus invalidating this work (see Section 4.3).
This failed attempt is important if for no other reason than to demonstrate the
desirability of mechanically checked proofs.

4.3 Top Major-State (HOL)

Desiring machine-checked, formal proofs of correctness, and fi_eling that it lacked

the requisite experience in-house, RSRE contracted the Hardware Verification

group at Cambridge University to produce high-level proofs of correctness for

VIPER. Tile first proof, which showed the correspondence between the top-

level specification and the major-state macMne, was published in 1987 [Coh87].
Cohn reported that this proof required six months to complete, and involved

over one million primitive inferences. Due to a change of plans (see Section 4.4)

this proof is only of historical interest, and does not play any role in the formal
correctness argument for VIPER.

Cohn began by translating the LCF.LSM specifications into the higher-order
logic HOL IGor87]. Since HOL was derived from LCF_LSM, the translation

of the top-level and major-state specification from LCF_LSM into HOL was

straightforward. The proof of equivalence also required Cohn to augment the

original specifications in two respects. Recall that the major-state machine was

modeled as a set of functions representing different phases of instruction ex-
ecution, without any formal connection between the states. Cohn formalized

the connection by combining all of the state transition functions into a single
function. Cohn also formalized a notion of time, where each unit of time rep-

resented one transition in the major-state machine. Again, proofs at this level

ignore the possibility of reset and memory timeout since these eventualities are

not represented in the specifications.
Several blatant errors in the LCF_LSM major-state machine specification

were uncovered during the proof. During the fetch cycle, for example, the check

for illegal instructions was specified to be made against the previous contents
of the instruction register, not against the instruction just fi,tched. Since tlw

ma.ior-staI.c ma,'hinc was an almtracti_3u created I\_r pr_of, am[ n,_l an int,'gra[

i_;trl, t_J"I.Jlt"&'sign, i.Jwsc ,'rrtws are not nl;I.nifesi_'d ill t.h," actual devices.
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4.4 Top Block

Cohn next considered the verification of the major-state machine with respect

to the block-level specification. This approach was abandoned for technical

reasons. Instead, Cohn attempted to prove the correspondence of the block-level

specification with respect to the top-level specification directly. This effort did

not result in a finished proof that the block-level machine correctly implements

the VIPER top-level specification.

Cohn's first challenge was to convert the block-level specification into a form
that was amenable to formal analysis. Recall from Section 3.3 that the block-

level specification consists of a set of LCF.LSM functions, schematic drawings,

and text. Using these sources Cohn created an HOL function which is believed
to faithfully capture the intention of the VIPER designers for the block-level

machine. This function is more complex than the VIPER major-state specifica-

tion, as each major state is further divided into a number of minor states. The
tIOL block-level specification function was then expanded, using definitions and

simplification iemmas, to produce what is essentially a symbolic execution of
the block-level machine for each po6sible VIPER instruction schema. Cohn also

proved that the expansion did cover every instruction schema.
To finish the proof, it would be necessary to prove that the results computed

by the block-level specification match the top-level specification. Paraphrasing
Cohn, this step was not taken because

1. Resources were limited, and the research results would not justify the

effort.

2. No one had developed an IJOL theory of bit-string operations, which is

critical for completing the proof.

3. Relating the high-level results to the block-level results might require in-
tricate knowledge of the design to understand exactly how the low-level

design implements the specification.
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Top:
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(WOILD33
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(VAL32 (HEI_ hBBR(ram,preg) ) ) ) ) ) ) )

Figure 4.1: Derived computations for an ADD operation for the VIPER top-

level and block-level specifications.

Instead, Cohn delivered the symbolic expansion to the VIPER design team,

who informally analyzed it and found no obvious errors. Quoting from [Coh89a]

(the italics are Cohn's):

For the non-ALU sequences, the results are not very complicated
and they appear to be as intended. Some of the arithmetic-logic

paths are also apparently correct. Others, in particular the addi-

tions, subtractions, and comparisons, are neither obviously correct

nor incorrect, and require further study. So far, there do not seem

to be any definitely incorrect results, but obviously, since the formal
analysis ends at this point, there very well could be. For that reason,

a great deal of care should be taken in describing the Viper block

model as being 'verified'; it has to date only been analyzed ...and

inspected ...

Cohn goes on to give examples of the types of obstacles remaining. For ex-

ample, Figure 4.1 displays the result computed by the ALU during an addition,

first from the top-level specification, then from the block-level specification. The

informal argument is simple: both expressions compute the low-order 32 bits
from addition of two 32-bit words. In the expression from the top level, the
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result is obtained by truncating the 34-bit result of a sign-extended addition; at
the block level, a 33-bit value is truncated. This is an example where it is fairly

"obvious" that the two levels compute the same value. Cohn also gives other

examples in which the correspondence between levels is far less clear. Unfortu-

nately, the lemmas about bit-vector operations that were needed to prove the
correspondence were never developed.

The status of this proof attempt is unchanged since the publication of

[Coh89a]. There is no indication that this proof will ever be completed.

4.5 Proof Summary

Several attempts were made to prove correspondence between the various levels

in the VIPER specification. These efforts were undertaken by RSRE and re-

searchers at Cambridge University over a three-year period. So far there is no

complete proof that the gate-level specifications implements the top-level speci-
fications. RSRE used Intelligent Exhaustion simulation to analyze the gate-level

implementations. The most satisfying formal work on VIPER is Cohn's proof

that the major-state machine correctly implements the top-level specification.

Unfortunately, this proof has no formal connection with any of the other proof
attempts, except that the same HOL top-level specification was used for the

Top ¢==_ Block analysis. The final attempt to prove that the block-level

model is equivalent to the top-level specification was prematurely terminated,
but carried to the point that the results are at least plausibly correct. None of

these efforts address resetting the machine, memory timeout, forced error, or
single step modes.

A satisfactory completion of this work would require at least:

• The adoption of a more rigorous framework for gate-level verification than

that provided by Intelligent Exhaustion.

A formal proof that the gate-level ALU, which was partitioned in order

to be analyzed by Intelligent Exhaustion, correctly implements the block

level specification.

• The completion of Cohn's Block Level _ Top Levelproof.

• The specification of integers, along with integer operation appearing in
the top-level specification.

Until these conditions are met, the claims that VIPER has been formally verified
are unfounded.



Chapter 5

C onclusion

VIPER has been verified in the traditional hardware engineering sense, i.e., ex-
tensively simulated and informally checked. Before we would be satisfied that

VIPER was verified in the formal sense, we would expect to see complete formal

specifications at every hierarchical level, from the top-level instruction inter-

preter down to the gate-level design. Accompanying these specifications should

be proofs which showed that the gate-level design correctly implements the
top-level machine. These conditions could never have been met using RSRE's

original specification and proof methodology. We pointed out several of these

deficiencies, including the use of the informal simulation language ELLA for the

gate-level specification, the lack of rigor in the Intelligent Exhaustion analyses,
and the incomplete nature of RSRE's block-level specification. These points,

and the fact that the attempt to prove the correspondence between the top-level

and block-level machines in HOL is incomplete, lead us to the conclusion that

VIPER has not been formally verified.

The VIPER work serves as a case study for several technology transfer issues,

clearly demonstrating a need for improved formal systems. Although verifica-

tion methods are an active area of research, application of these methods must

eventually be placed in the hands of hardware designers, or specially trained

engineers who are intimately familiar with the designs. It is significant that
Hunt was an experienced hardware designer prior to the successful verification

of the FM8501. Cohn was not, which only added to the problems caused by

attempting an after-the-fact verification of an unfamiliar specification.

There is also a need to improve the Boolean decision procedures in mechani-
cal reasoning systems, in order to avoid the necessity for special purpose methods

such as Intelligent Exhaustion. ['or example, Bryant [Bry86] recently introduced

a set of algorithms which provide extremely fast verification of Boolean circuits.

It should be possible to soundly implement similar procedures in currently ex-

isting systems.
The VIPER project also pointed out the need for extensive libraries of lem-
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mas about arithmetic and logical operations on the basic data types found in

hardware specifications. This absence, and the presumed difficulty of creating
these lemmas in HOL was one of the reasons that Cohn's last proof attempt

was prematurely terminated. Something also clearly needs to be done about the

large amount of detailed interaction required to complete a complex hardware
proof using a mechanical assistant.

There are different degrees of rigor possible when applying formal meth-

ods to hardware design: hand-written specifications, hand proofs, mechanically
recorded specifications, and mechanical proofs. The VIPER effort employed
all of these techniques with varying degrees of success, but it is clear that the

VIPER team was more thorough at specifying the abstract behavior of VIPER

than traditional engineering techniques would allow. Without the use of formal

techniques, the proofs of correctness could not have even been attempted. We
are encouraged by the use of formal techniques in VIPER, as their use demon-

strates what we believe to be a new paradigm in computer hardware specification
and validation.

In conclusion, we admire the efforts of the groups at RSRE and Cambridge

who took on a formidable verification task. We don't consider the shortcomings
of the VIPER project as a pessimistic indication of the future of formal hardware

verification. We are optimistic that the problems uncovered in the VIPER effort

can be overcome, and that this hard-won experience will benefit future work.
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